Randomized coordinate descent method for inconsistent tensor linear systems with t-product

發布者:吳敏發布時間:2024-04-16浏覽次數:10

江蘇省應用數學(中國礦業大學)中心系列學術報告

報告題目Randomized coordinate descent method for inconsistent tensor linear systems with t-product

報告人:殷俊鋒 教授(同濟大學 數學科學學院)

報告時間:2024418日(周四)下午3:00-4:00

在線QQ:955230990

報告摘要A randomized coordinate descent method is proposed for solving inconsistent tensor linear systems with t-product. Theoretical analysis proves that the new method converges to the least-squares solution of the system in expectation at a linear convergence rate, which is faster than the tensor randomized extended Kaczmarz method. Its Fourier version is also analyzed, and the convergence property is provided. Numerical experiments verify the efficiency of the tensor randomized coordinate descent methods, which outperform the existing iterative methods in solving inconsistent tensor linear systems.

報告人簡介:殷俊鋒,同濟大學數學科學學院教授,博導,創新創業學院副院長。主要研究方向數值代數與科學計算,計算金融,大數據和人工智能。主持及參與國家自然科學基金、上海市及教育部等科研項目10餘項,發表高水平SCI學術論文30餘篇,2009年入選上海市“浦江人才”,2010年榮獲中國數學會計算數學分會應用數值代數獎,2019年獲中國數學會計算數學分會青年創新獎(提名),現為中國工業與應用數學學會副秘書長,中國工業與應用數學學會大數據與人工智能專業委員會委員,中國高等教育學會教育數學委員會常務理事。



Baidu
sogou